在黃瓜葉部角斑病提取任務中,使用類間方差法初分割,繼而使用熵發二次分割提取病蟲害區域。另外,彩片中,使用色彩信息分割圖像也是常用的手段,常見的色彩信息表示方式有BGR和HSV,通過設置色值區間可提取農作物病變區域。其中,HSV(或者HSI)更為可靠,其更的表示同一視覺感受顏色在不同光照條件下的區間。
Canny算子相較于Sobel算子更加復雜,能獲取更加的邊緣且獲取到的邊緣不會虛化,抗噪性更好,但無法體現邊緣的強弱。Canny算法適用于描述農產品的褶皺程度,如紅棗中皮皮棗的篩選。文獻[4]采用了一種改進的Canny算子用于蘋果輪廓的提取。相較于闕值法,邊緣檢測方法不于提取粗略的輪廓信息,還可以用來提取更加細致的特征,常用于二次分割或配合闕值法使用。
基于深度學習的圖像分割方法,主要研究領域是在于語義分割,即根據圖片內容,將圖像分為多個有含義的部分,對于農產品分類而言有著革命性的意義。全卷積網絡FCN是深度學習用于進行圖像分割的先驅,以分類模型AlexNet為基礎,將其3層全連接層轉化為反卷積層進行上采樣,從而將輸出有特征分類轉化為區域特征熱力圖。